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We give an interpretation of the standard coordinates on Minkowski space time 
that permits us to introduce an additional invariant time concept. We then 
consider an alternative set of coordinates and kinematical conservation laws on 
the resulting "space-time." We obtain two conservation laws in addition to those 
of relativistic kinematics. The new conservation laws concern the quantities 
kinematical mass and mass defect, which we have introduced in order to have a 
more complete description of composite systems. 

I. INTRODUCTION 

The construction of a particle dynamics is ultimately based on assump- 
tions about structure of space-time and kinematics as perceived by a class of 
acceptable observers. Some of these assumptions are quite general and do 
not impose any detailed structure, while others discriminate between differ- 
ent a priori possibilities like Galilei or Einstein relativity. 

In the present paper we will discuss these concepts within the frame- 
work set by the theory of special relativity. We start by considering the 
(Minkowski) space-time M and the interpretation of the canonical coordi- 
nates. This discussion permits us to define a universal "invariant" time 
which might serve as the parameter measuring the evolution of, and the 
correlation between, the states of the particles constituting a composite 
system. 

The introduction of the additional time lead us to introduce the 
extended configuration space M • R, on which we define another set of 
coordinates. These coordinates are instrumental for the subsequent discus- 
sion of the kinematics. In fact, they suggest our choice of momentum space 
of a particle along with the action of the kinematical symmetry group. 

Our definition of a free relativistic particle is given such as to be 
general enough to include the center of mass system of a system of several 
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particles. To this end we have introduced the concept of kinematical mass 
which is the sum of the masses of the constituents and differs from the 
effective mass or invariant energy (c.m. energy) to which it is related by a 
constraint to the "mass  shell." We also introduce a concept of "internal  
energy" as a measure for the effective mass. 

In our choice of definitions we have been conducted by the following 
principles: 

(i) One free particle should be described in the same way as the center 
of mass of a system of several particles. 

(ii) The usual Einstein relativistic kinematical conservation laws should 
be incorporated. 

(iii) The formulation should be compatible with the claim that the 
relative localization of two particles is a space-time localization. 

Considered a posteriori ,  these conditions seems to limit quite effectively 
the kind of theory one might have. 

In this paper, we have limited ourselves to considerations about the 
kinematical conservation laws, and the interpretation of the Minkowski 
space-time coordinates and universal time. Discussions of the nontrivial 
dynamics, classical and quantal, can be found in Aaberge (1977a, 1977b, 
1983). 

2. M I N K O W S K I  SPACE AND T H E  R E S T R I C T E D  
I N H O M O G E N E O U S  L O R E N T Z  G R O U P  

The mathematical structure of the theory of special relativity is sum- 
marized in the isometric action of the restricted inhomogeneous Lorentz 
group on Minkowski space. 

Minkowski space (M, g) is a four-dimensional manifold M homeomor-  
phic to R 4 and endowed with a semi-Riemannian metric g which in the 
canonical orthonormal coordinates z" : M --, R 4 is represented by the matrix 

( g . . )  = 

- 1  0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

The restricted inhomogeneous Lorentz group is the semidirect product 
of the semisimple connected group SO(3.1)o I and the Abelian group R 4. In 
its action on M it appears as the connected component  of the group of 
isometries of (M, g). 

ISO(3.1)0 ~- connected component of S0(3.1). 
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The interpretat ion of the restricted inhomogeneous  Lorentz  
SO(3.1)  o x R 4 as a relativity group leads to the paramet r iza t ion  

,s 

group 

We will denote  by 

and 

S 0 ( 3 ,  1)o • a - ,  Aff (R 4) 
S 

( e ' ,  u' ,  a " ) ~  ( A ( O ' ,  u')", , ,  a ~') 

the corresponding affine representat ion of SO(3,  1) 0 x R 4 on M = I1~ 4, and 

by * 

z ~  A(Oi ,  u ~'~) ~z~ + a ~ 

the associated action on the canonical  orthonormal coordinates. The matr ix  
(A~) then has the form 

A(O ~, ui)~ = ), 

A(0 i  ' i i i yu i / c  u ) o = A(O' ,  u i) o = 

y2 UtUj 
A(0' ,u ' ) ' j=  8~+  - -  

y + l  c 2 

with "), = (1 - ( u i ) 2 / c  2) - i / 2  where c is the velocity of  light in vacuo; 

A ( 0 ' , 0 ' ) ~  = A ( O ' , 0 ' )  ~ = A ( 0 ' , 0 ' ) '  o = 0 

and ( A ( 0 q 0 ' ) ) )  is the usual representa t ion of the rota t ion group SO(3)  on 
R 3" 

The structure of  SO(3.1) o is moreover,  complete ly  de termined by the 
two relations 

i �9 i j A ( 4 / , O i ) A ( & , u i ) A - ' ( O i , O i ) = A ( A ( O i , O i ) j O J ,  A ( * i , o i ) j  u ) 

c-'(w~(v'))A(o', u')C(A(O', u' yy(~ ' ) )  

= A ( r  A- , (o ' .  r 

( ( 0 ' ) )  = S O ( 3 )  c {(O', u')) = SO(3 ,  1)o c ((O', u', a~')) = S 0 ( 3 ,  1)o x R 4 
$ 
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where 

and 

= ((1 _ (l-(v,):/c:)-'% ) 

t_(w.( = A(Og v,) 

Aaberge 

3. THE EXTENDED CONFIGURATION SPACE 

To a given inertial observer ~,, physical space and time have separate 
realities. A distance in physical space is measured with a "measuring stick," 
and a duration in time with a clock. Every event recorded by the observer 
can thus be classified according to its relative position in physical space 
(ai), and the time of its occurrence t, by means of X's "measuring stick" 
and clock C. 

Assume that ~, observes a clock C' moving with constant velocity (u i) 
relative to himself, at the position (a ~) at time t = 0, and that moreover, he 
reads off the time a~  on C'. Then, at time t, ~ would find the clock C' at 

zi( t ) = yuit  + a i 

and he would read off the " t ime" 

z~  t ) / c  = ~,t + a ~  

According to the theory of special relativity, the "mot ion"  of the clock C' is 
described by a line, its worldline, in the Minkowski space M. With respect 
to a canonical orthonormal coordinatization "relative to ~" this line is given 
by 

t ~ ( z a ( t ) )  = ( w ~ ( u i ) t  + a ~) 

One can also represent the motion of C' by the curve 

t~ -~(z~ ' ( t ) , t )  

in extended configuration space M • R, on which we assume the action 

( z ~ , t ) ~  ( A(O i,uix~) ~z ~ + a ~ , t )  (1) 
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This description of the motion of a clock C is 
Moreover, observing that each side of the identity 

t2c2= (z~'( t)-a~')(z~,(t)-a~,)  

manifestly covariant. 

is Lorentz invariant, we are naturally led to the following interpretation of 
the action (1) and time t. Consider two inertial observers X and ~' who are 
equipped with the clocks C and C'. To X, the motion of C is described by 

t ~ (Ct,O,O,O, t) 

and the motion of C' by 

t ~ (yct + a ~ + a i, t) 

The description relative to ~' is obtained via the Lorentz transformation 
(A(0 i, - ui), - A(0 i, ui)~a ~) which relates ~ and h'; thus, with respect to ~', 
the motion of C is described by 

t ~ ( T c t - y ( a ~  ai+Y77-1 aJuJi7 u Ya~ ui ) c  , t) 

and the motion of C' by 

t ~, (ct,O,O,O, t) 

Accordingly, in the description relative to X, t appears as the time measured 
by the clock C as observed by ~,, and in the description relative to ~' it is the 
time measured by the clock C' as observed by ~'. In other words, 

t must be interpreted as the time measured by the clock of the observer 
relative to which the system considered is described, as observed by this 
observer. 

An alternative set of coordinates is defined on extended configuration 
space by 

( z . ,  t )  ( r  t)  = (z  ~ - ct, z', t) 

In these coordinates which are coordinates relative to the frame of reference, 
the action (1) of SO(3, 1) 0 x R 4 reads 

$ 

i i t~ v t )  ( q ~ , t ) ~ ( A ( 0 , u )  ~q + v ~ ( u i ) t + a  ~, 
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for 

v.(r162 

Accordingly, the motion of the clock C' is described by )~ in the coordinates 
(q~, t) by 

t ~  (qV(t), t) = (v"(ui) t  + a", t) 

The expression v~(u ~) will be called the four-velocity of the clock C' relative 
to X. It turns out that with this definition of four-velocity, the kinetic energy 
of the clock C' relative to )~, can be given in the following suggestive form: 

T= (V - 1) me2 = �89 

where m denotes the restmass assigned to C'. 
In the following we will consider the kinematics of Einstein relativistic 

particles in these coordinates. 

4. THE ONE-PARTICLE SYSTEM 

Definition. The system of a free Einstein relativistic particle of kine- 
matical mass m is by assumption associated with 

(i) the momentum space 

M =  ( p "  ~R41(p~  + mc) 2 _ ( i f ) z >  0 &p~ > _ mc} 

(ii) the kinematical symmetry group SO(3, 1) o • R 4 acting on M by 
s 

i i /x ~ . ( A ( O , u )  . ,a  ) . p " ~ A ( O ' , u i ) " . p " + r n v " ( u  i) 

(iii) the observables four-momentum p~', mass defect Am, effective 
mass m', internal energy h, Hamiltonian H, and "constraint" a, 
being represented by the following functions M ~ R' 

p"(p") = p" 

Arh(p")  = l ( ( p  ~ + mc)2-(p i )2)  ' , 2 -  m 

rh'( p")  -- hrh( p")  + m= l ( ( p  ~ + mc)2-(p i )2)  '/2 
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/~(p")  = e ( e >  - �89 

P~ P~, 
/g/(p~) = --~m +/~ ( p  ~' ) 

6 ( p . )  = pO _ I f / ( p . )  

= a r a ( p " ) c +  ara(P")2 
2m c -  l-h(P") c 

(iv) the constraint " to  the mass shell" 

,~(p.)=o 

857 

A first consequence of this definition is that/-7/and/~~ has the same 
spectrum on the constrained momentum space (mass shell), 

M (~ = (Mla = O) 

We will refer to this spectrum as the energy spectrum of the system. To 
prove this statement, consider the diffeomorphism 

d~:M--*M, ( p ~  pi) 

It is easy to verify that 

�9 )c2 

thus, 

14-mc 22e I c2 4- 2mo~c2 ) l/2 -- 

I/2 

- -  m c  2 - -  aC 

(po ,)(0, p')c = (~o ~)(0, p') 

For e = O, this gives the usual expression for the kinetic energy of a free 
Einstein relativistic particle of mass m as a function of the momentum pi. 



858 Aaberge 

For e ~ 0, (p0 o 4)(0, pi)  is naturally interpreted as the kinetic energy of a 
free Einstein relativistic particle of kinematical mass m (1 + 2 e / m c  2)1/2 the 
lower bound of whose energy spectrum has been shifted by the amount 
((1 + 2 e / r n c 2 )  I/2 - 1)mc2; or as the kinetic energy of free Einstein relativis- 
tic particle of kinematical mass m and internal energy e. 

The validity of these two interpretations is based on the assumption 
that the lower bound of the energy spectrum is not uniquely defined, and 
they reflect the fact that in the Einstein relativistic case, a translation of the 
energy spectrum implies a redefinition of the kinematical mass, the mass 
defect and the internal energy, though leaving invariant the effective mass. 
Such a translation, by an amount  Ae is consistently defined on 
((m, p~, Am, h, H) )  by the semigroup action 

m ~ m + A e / c  2 

pO ~ p O _  A e / c  

pi ~ pi 

A m  ~ A m -  A e / c  2 

1 ( m 2 

m m + A e / c  2 

H ~  

m - - 

m (  p~ ~ae2 ) l 
m + A e / c  2 H -  c c 2 - 2 

(2) 
2 

c 2 } 

( 
rn + A e / c  2 m + --~ 

Accordingly, the effective mass m ' =  Am + m appears as an intrinsic char- 
acteristic of the particle, while the definition of kinematical mass and 
internal energy depend on the choice of lower bound of the energy spec- 
trum. 

5. T H E  S YS TEM  OF T W O  PARTICLES 

Definition. The system of two free Einstein relativistic particles of 
kinematical masses rnl and m 2 (rnl >/m2) is by assumption associated with 

(i) the momentum space 

M •  + m . c ) 2 _ ( p / , ) 2  > 0  

and pO > _ m . c ,  n = 1,2} 
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(ii) 

(iii) 

the kinematical symmetry group SO(3.1) 0 x R 4 acting on M x M 
by s 

p ~ A ( 0 ' , u " "  ~ )  u p . + m . v " ( u ' )  ( n = 1 , 2 )  

the individual particle observables P~,Pz,~' ~' Am~, Am 2 etc. which 
are supposed realized as in section 4; and, the observables of 
momentum Pv and mass defect AM of the center of mass, 
momentum p"  of the internal system, the Hamiltonian H, the 
internal Hamiltonian h, and the "constraints" ~ and 13, which are 
defined by the following functions M • M ---, R : 

/~ .  o x I . ( p ~ ,  p f )  = 

A/f/o xt,( p~', p~') = 1 o ~ ( ( p ,  + pO + + p~)Z),/2_~., M M e ) Z - ( p ]  

,~" o gl( p~, p~ ) = L - ' (  p~ + p~ )J'. mt p~ - rnzp ~ 
m I + m 2 

P~Pt~, 
/~/o 'I ' (p~, p~) = 2rn, 

P~P2~, 
- -  + ---~--~--2m2 + e~ + ez 

/~ ~ g/(P~" P~) = m--7 ~ 2  m i ~  m--~ ] 

mr Pz~, - mzPl~, ) 
X + e l + e  2 

m l ~  r 2 

(iv) 

&o ,it( p~, p~,) = pO + pO _ I f / o  xi,( p~, p~) 
e 

= pOo ,t,( 

( l / c ) ( 1  - 4rn / M  ) ~/2 h o xI,( p~, p~ ) 
-(re,e,- msz) 

c(1 + 2/~o '~( p~, p~ ) /Mc 2 ),/2 

where 

( )  mlm z p'c 
M = m  I + m  z, m = - - , r n l + m 2  a n d L ( P  ~) - -A  pO+Mc 

the constraints " to  the mass shells" 

&l(p~', p~') = 0 and &z(p~', p~') = 0 
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or equivalently 

d(p~', p~') = 0 and /~( p~', p~ ' )=0 

To discuss some consequences of this definition, we will 
another representation defined by the diffeomorphism 

' , P ' M X M - - - , M X M ,  (p~,p~)~(P~' ,p~ ' )  

consider 

(3) 

In the coordinates (P ' ,  p ' ) ,  the momentum space M x M is characterized 
by 

M x M =  {(P ' ,p~ ' )  e n a i ( P ~  Mc) 2 - (P / )2  > O, pO > _ Mc, 

mt (( P~ + _ (p,)2),/2 > p O >  m2(( P~ + M c ) 2 - (  " -  

and 
m,( ( P ~ + Mc)2 - (  p i )2 ) -2m2M(  f~( p# ) - e ,  - e2) 

2M((P  ~ + Mc)2- (p ' )2 )  '(2 
> pO 

m2((P ~ + M c ) 2 - ( P i ) 2 ) - 2 m , M ( f ~ ( p ' ) - e , - e 2 )  
> - -  

2 M ( ( e  ~ + Mc)2 - (J, ')2) ' '  

The action of S0(3, 1) o xR 4 is, moreover, given by 
S 

p '  ~ A(O i ,u ' )~P"  + Mv~(u ') 

p~'~A(Oi,(P~',A(O',ui)))~'vp ~ 

for A (0~,( P#, A (0 i, u i))) being the rotation defined by 

' ~' ' (A(O ' ,u ' ) ' :P"+ A(0:,(e.. A(O', u ) ) )~=L-  M:.(:'))~. 

X a(  Oi, ui)'~aL( P~')a ~ (4) 
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The observables pl  ~, p~, P~, AM, p,  h, H,  ~x, and 13 are represented by the 
functions 

p~o , t , - ' (  p~', p~')= 

p~ o xt, - ' ( p~', p~' ) = 

P ' (p~ ' ,  p~') = 

a ~ t (v . ,  p . )  = 

m I 
~, _ L(  pt')t" p " 

- ~  P" + L (  P")"~p ~ 

p" 

1 - ; ( (v  ~ + Me)2-  (p,)2) '/2 - M  

p~p~ 
fl( V~', p~')= ~ + e, + ez 

P~P~ p"p~ 
Is P~" P t ' )=  2 M  +-2--m-m + e t + e 2  

~( ? , ,  p ,  ) = ?o _ ! t:i( F,~, p~ ) 
c 

~( p~,. p~,)= pO_  

( l / c ) ( 1 - 4 m / M ) ' / 2 [ T ( p  t') 
- ( l / M c ) ( m , e ,  - m2e z) 

[1 + 211 ( p~') /Mc2] '/2 

The internal energy spectrum of the system is by definition the spec- 
trum of/~ on the submanifold defined by the constraint/~ = 0. Accordingly, 
the center of mass appears as a free Einstein relativistic particle of kinemati- 
cal mass M=rn~  + m 2 and internal energy e, for every value e of the 
internal energy spectrum. 

6. T H E  EINS TEIN RELATIVISTIC KINEMATICAL 
C O N S E R V A T I O N  LAWS 

Let 1 and 2 denote two particles of kinematical masses m I and m2. 
internal energies e I and e 2, and momenta  p~ and p~', entering into a 
"collision." In general a collision of two particles produces a number  of 
particles n = 3 . . . . .  N of kinematical masses rn. * 0, internal energies e.  and 
momenta  p~, and a number  of "pho tons"  m - - 1  . . . . .  M of kinematical 
masses 0 and momenta  k~. 
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Since the system is invariant under "spatial" and time translations we 
conclude that the following quantities are conserved during the collision: 

N M 

P~ + P~= E P~ + E k~., (5) 
n=3 m=l 

o r  

N M 

pO+pO= E p,0+ E k~ (6) 
n = 3 m ~ 1 

N M 

Pil+Pil= E P~ + E k /  (7) 
n = 3  m ~ l  

and 

P~P2~. N p,~p.. M P~PI~, + 1 = .~3  - -  
2mr 2m 2 2m.  + ~ ck~" + Ae (8) 

where Ae u = Y ' . n = 3 e n -  e~-  e 2. Moreover, the assumption of the covariance 
of the conservation laws (5) implies the conservation of the kinematical 
mass 

N 

m, + rn 2 = ~ m,, (9) 
t~ ~ 3 

In fact, the transformed of (5) by a Lorentz transformation is 

u i \ l  z v A(O' ) " ~.p,+m,v"(u')+A(e i, ) . p=+m2v~ ' (u  ') 

N M 

E (A(8 i, u"") .p.+" m.v"(u'))+ E A(e'.u'") .k., 
n = l  m = l  

or because of (5) 

N 

(m I + m2)v~(u  i) = ~ m,,v~'(u i) 
n = 3  

which implies (9). 
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By adding the conservation laws (6) and (9) and changing to the 
coordinates (Am, p~), one obtains 

( (p ' )2+ (Am, + rnl)2c2)l /2+((p~)2+(Am 2 + m2)2c2) '/2 

N M 
= ~, ( (p i )2+(Am, ,+mn)2c2) ' /2+ ~_, ((k~n)2) ./2 

n = 3  m = l  

(io) 

Thus, the conservation laws (5) and (8) implies the Einstein relativistic 
conservation laws (7) and (10) (Hagedorn, 1963). In addition, we obtain the 
conservation law (9) and the law 

Am 2 Am 2 ~ ( Am2n l Ae 
A r n l + ~ + A m 2 +  2m2 =, ,=3 Am~+ 2m~] + c "-~- 

which is obtained by subtracting (6) from (8) and change to the coordinates 
(Am, p). These additional conservation laws make it possible to obtain a 
more detailed description of nonelastic processes, i.e., imposes a certain 
mode of description which is compatible with the usual Einstein relativistic 
kinematics but not imposed by it. 

Consider for example the description of the process in which an 
"atom" in a given initial stationary state of internal energy e~ decays to a 
final stationary state of internal energy e l by emitting a "photon." In the 
center-of-mass frame of reference this process is described by the conserva- 
tion laws 

i i 0 = p ) + k /  

A m i + m = [ ( p } ) 2 + ( A m / + m ) a c 2 ] l / 2 + [ ( k ; ) 2 ] ' / 2  

Am2i e i 
Am,+ - -  

2m c 2 

Am} = e._ Z 
Am/+ - -  

2m c 2 

From these expressions we obtain the following relation between the energy 
of the emitted "photon" in the center-of-mass frame of reference, and the 
internal energies of the initial and final states, 

e , - e ,  
/1 ' ~ " 2 \ 1 / 2  -t-zei/mc ) 
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A second example concerns the process of an annihilation of two 
particles. If we let m~ denote the kinematical mass of the particle and e 2 the 
internal energy of the antiparticle, we can conclude from the conservation 
laws that the antiparticle has kinematical mass 

m 2 = _ 19/1 

and mass defect 

Am2=mt[(i--2e2/rnlc2)' /2+l] 

Moreover, assuming that the internal energy e~ of the particle is equal to 
- e 2, we find that the particle and the antiparticle have the same effective 
mass, 

A m  l + r r / I = A m  2 4 - m  2 

Another consequence is related to the description of particle produc- 
tion in collisions and decays. It is known from nuclear physics that there 
exists processes where the effective mass m' is not conserved. The mass 
conservation law (9) implies that the particles involved in such processes 
must be considered as composite systems whose kinematical mass is the sum 
m of the kinematical masses of its elementary constituents, and whose 
effective mass is m ' +  Am, where Am denotes the mass defect due to the 
binding energy. Such processes must thus be described in terms of a 
rearrangement of the elementary constituents, eventually together with pairs 
of constituent-anticonstituent. 

7. THE ANTIPARTICLE 

The above considerations justify the following: 

Definition. The antiparticle of an Einstein relativistic particle of kine- 
matical mass m > 0 and internal energy e is an Einstein relativistic particle 
of kinematical mass - m and internal energy - e. 

The formalism presented in Section 3 cannot be applied to describe the 
system of a particle and an antiparticle on the basis of this definition of the 
antiparticle, since M = m I + m 2 = m - m = 0. However, with respect to 
processes not involving the annihilation of the system, the kinematical mass 
and internal energy of the antiparticle can be redefined according to (2) 
with Ae ~: 0. In particular, the choice Ae = 2mc 2 makes the antiparticle 
appear as a particle of kinematical mass m and internal energy e. 
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